• @omaforos
Ahora podés seguir a OMA Foros en Facebook, Instagram y Twitter!

  • Anuncios Globales

Ver último mensaje sin leer Adjunto(s) Arrancó la FOFO 9+1 años


La FOFO se ha terminado



Comenzó la FOFO ANIVERSARIO: 9+1 AÑOS

Para dudas de enunciados postear en este thread.

ACLARACIÓN: En el Problema 1 se debe dar el resultado en su expresión decimal.


Un pequeño FAQ para tener en cuenta a la hora de resolver los problemas y mandar las soluciones.

¿Los problemas están ordenados por dificultad?
Aproximadamente sí. Esto es un poco subjetivo, y en general no es cierto que necesariamente el problema $n$ sea más fácil que el $n+1$. Nuestro consejo es arrancar pensando desde los primeros y avanzar hacia los últimos.

¿A dónde tengo que mandar las soluciones?
Por ejemplo, el problema 3 lo publicó el usuario "Luli97". Abajo de su nombre están enlistados su número de mensajes, su fecha de registro, y al final, hay un botón que dice "MP". Al hacer click allí, verás un panel para que escribas tu solución. Una vez que la termines de escribir y revisar, al hacer click en enviar, "Luli97" recibirá tu solución.

¿Cuándo tengo que mandar las soluciones?
Las podés mandar en cualquier momento del fin de semana. Lo ideal sería que procures mandar tu solución una vez que estés seguro de que no te equivocaste. Recordá que tenés tiempo hasta las 23:59 del Martes 8 de Diciembre de 2020, y que podes reenviar soluciones y agregar aclaraciones todas las veces que vos quieras.

Algunas de las soluciones que mandé quedaron en "bandeja de salida" en vez de "mensajes enviados". ¿Qué significa esto?
Solamente significa que el destinatario aún no leyó el mensaje. No hace falta que lo envíes de nuevo.

¿Vale la pena mandar soluciones incompletas?
Si en algún problema lograste obtener resultados parciales, o ideas que creés que sirven mucho pero no sabés cómo terminar el problema, igual podés mandarnos tu solución. Podés rescatar algunos puntos que suman. Recordá que todos los problemas valen lo mismo en puntaje.

¿Cómo puedo obtener un premio?
Se darán medallas especiales a los usuarios con mejor desempeño. No obstante, habrá otros premios aparte de estas medallas, que se determinarán exclusivamente por puntaje.

¿Cuándo me entero de la corrección?
Una vez que termine el período de envío de soluciones, nosotros vamos a avisarte por mensaje privado cuál fue tu puntaje.

Si resolví pocos problemas ¿vale la pena que mande mis soluciones?
Sí, por supuesto que vale la pena. Por más que hagas un solo problema, mandá lo que tengas, porque podés ganar algún premio.

¿Se pueden consultar apuntes, material en Internet, o usar software específico para pensar los problemas de geometría?
No, aplican las mismas restricciones que en una prueba presencial. La idea de esta competencia es que les sirva como entrenamiento para las demás pruebas. Como no podemos verificar esto, es responsabilidad de ustedes cumplirlo. Sí está permitido, y recomendamos fuertemente, incluir en las soluciones a los problemas de geometría figuras de análisis hechas utilizando algún software, como Geogebra.

No me inscribí, ¿puedo participar igual?
Sí, podés.

La FOFO del 10.pdf

Vistas: 1186  •  Comentarios: 35  •  Publicar una respuesta [ Leer todo ]



  • Problema del día

Problema del día de OMA:
Mario escribió en el pizarrón los números del $1$ al $2019$ (ambos incluidos). Betty borra algunos de los números del pizarrón, de forma tal que si elegimos cualquier número del pizarrón, el último dígito de este número coincide con el último dígito de la suma de todos los restantes números en el pizarrón.

Por ejemplo, si Betty deja los números $15$, $29$, $48$ y $1056$, cuando elegimos el número $29$ se cumple lo pedido porque $29$ y $15 + 48 + 1056$ terminan ambos en $9$, pero si elegimos el número $48$ no se cumple lo pedido porque $48$ termina en $8 y 15 + 29 + 1056$ termina en $0$.

Si Betty quiere que la suma de los números que quedan escritos en el pizarrón sea la mayor posible, ¿qué números deja escritos en el pizarrón?
Link al tema.

Problema del día de Geometría:
Sobre una mesa cuadrada se ha colocado un mantel cuadrado (pueden ser de diferente tamaño) sin dobleces ni arrugas. Las cuatro esquinas de la mesa están descubiertas y las cuatro partes del mantel que cuelgan son triangulares. Sabiendo que dos de las partes colgantes son iguales, demostrar que las otras dos partes también son iguales. 6 puntos
Link al tema.

Problema del día de Ñandú:
Hay $4$ colores: azul, blanco, rojo y verde para pintar cada casilla de la figura de un color.
n3 nac 2012 p3.jpg
Se pueden usar todos o algunos de los $4$ colores, pero se debe cumplir la condición de que las casillas que tienen un lado común sean de distinto color.
¿De cuántas maneras se puede hacer?
Explica cuáles son.
Link al tema.


  • Últimos temas

Problema 5 Nivel 1 Mayo 2020


Sobre una mesa hay varias cartas, algunas boca arriba y otras boca abajo. La operación permitida es elegir $4$ cartas y darlas vuelta. El objetivo es obtener todas las cartas en el mismo estado (todas boca arriba o todas boca abajo). Determinar si es posible lograr el objetivo mediante una secuencia de operaciones permitidas si inicialmente hay:

a) $101$ cartas boca arriba y $102$ boca abajo;

b) $101$ cartas boca arriba y $101$ boca abajo.

Vistas: 54  •  Comentarios: 0  •  Escribir comentario [ Leer todo ]

Problema 4 Nivel 1 Mayo 2020


María tiene un tablero de $6×5$ con algunas casillas sombreadas, como en la figura. Ella escribe, en algún orden, los dígitos $1$, $2$, $3$, $4$ y $5$ en la primera fila y luego completa el tablero de la siguiente manera: mira el número escrito en la casilla sombreada y escribe el número que ocupa la posición indicada por la casilla sombreada como último número de la fila siguiente, y repite los demás números en las primeras cuatro
casillas, siguiendo el mismo orden que tenían en la fila anterior.
Por ejemplo, si escribió $2$ $3$ $4$ $1$ $5$ en la primera fila, entonces como en la casilla sombreada está el $4$, el número que ocupa el cuarto lugar (el $1$) lo escribe en la última casilla de la segunda fila y la completa con los restantes números en el orden en que
estaban. Queda: $2$ $3$ $4$ $5$ $1$.
Luego, para completar la tercera fila, como en la casilla sombreada está el $3$, el número ubicado en el tercer lugar (el $4$) lo escribe en la última casilla y obtiene $2$ $3$ $5$ $1$ $4$. Siguiendo de la misma manera obtiene el tablero de la figura.
Mostrar una manera de ubicar los números en la primera fila para obtener en la última fila los números $2$ $4$ $5$ $1$ $3$.
Mayo2020P4N1.png

Vistas: 28  •  Comentarios: 0  •  Escribir comentario [ Leer todo ]

Problema 5 Nivel 2 Mayo 2020


Decimos que un entero positivo n es circular si es posible colocar los números $1, 2, …, n$ alrededor de

una circunferencia de tal manera que no haya tres números adyacentes cuya suma sea múltiplo de $3$.

a) Demostrar que $9$ no es circular.

b) Demostrar que todo entero mayor que $9$ es circular.

Vistas: 49  •  Comentarios: 0  •  Escribir comentario [ Leer todo ]

Problema 4 Nivel 2 Mayo 2020


Sean $ABC$ un triángulo rectángulo, recto en $B$, y $M$ el punto medio del lado $BC$. Sea $P$ el punto en la

bisectriz del ángulo $\angle BAC$ tal que $PM$ es perpendicular a $BC$ ($P$ está fuera del triángulo $ABC$).

Determinar el área del triángulo $ABC$ si $PM=1$ y $MC=5$.

Vistas: 67  •  Comentarios: 1  •  Escribir comentario [ Leer todo ]

Problema 3 Nivel 1 Mayo 2020


Una hormiga despistada hace el siguiente recorrido: comenzando en el punto $A$ va $1\text{ cm}$ al norte, después $2\text{ cm}$ al este, a continuación $3\text{ cm}$ al sur, luego $4\text{ cm}$ al oeste, de inmediato $5\text{ cm}$ al norte, continúa $6\text{ cm}$ al este, y así sucesivamente, finalmente $41\text{ cm}$ al norte y termina en el punto $B$. Calcular la distancia entre $A$ y $B$ (en línea recta).

Vistas: 43  •  Comentarios: 1  •  Escribir comentario [ Leer todo ]




  •  Ultimos posts

  •  ¿Quién está conectado?
  • En total hay 5 usuarios conectados :: 2 registrados, 0 ocultos y 3 invitados

    Usuarios registrados: Bing [Bot], Google [Bot]