• @omaforos
Ahora podés seguir a OMA Foros en Facebook, Instagram, Twitter y YouTube!

  • Anuncios Globales

Ver último mensaje sin leer Resultados FOFO 11 Años


Resultados FOFO 11 años


Finalmente ha llegado el momento: aquí están, estos son, los ganadores y premiados del FOFO.

Antes de que desesperadamente te muevas hacia la tabla es importante que sepas que ya están abiertos los respectivos posts de cada problema para que puedas compartir tus respuestas. El proceso de envío de las devoluciones de los puntajes puede ser un poco lento, debido a que estamos en un período de tiempo bastante neurálgico, así que tengan paciencia.

Ahora sí, sin más preámbulos, hablamos de los premios.

En esta ocasión, para determinar los premios, la única variable que se tiene en cuenta es el puntaje total obtenido. Para los primeros 6 puestos (en este caso, participantes que obtuvieron al menos 40 puntos) se otorga una Medalla Especial, y para los siguientes 9 puestos (en este caso, participantes que obtuvieron un puntaje entre 18 y 39 puntos), una Mención Especial.

Bueno, sin más vueltas, los resultados!
Spoiler: mostrar
\begin{array}{|c|c|c|} \hline
\text{Puesto} & \text{Usuario} & \text{Premio}\\ \hline
\text{1} & \text{BrunZo} & \textbf{Medalla Especial} \\ \hline
\text{2} & \text{Martín Lupin} & \textbf{Medalla Especial} \\ \hline
\text{2} & \text{NicoRicci} & \textbf{Medalla Especial} \\ \hline
\text{2} & \text{Sandy} &\textbf{Medalla Especial}\\ \hline
\text{5} & \text{EmRuzak} & \textbf{Medalla Especial} \\ \hline
\text{6} & \text{Uridig} & \textbf{Medalla Especial} \\ \hline
\text{7} & \text{Adriano Guinart} & \text{Mención Especial} \\ \hline
\text{8} & \text{El gran Filipikachu;} & \text{Mención Especial} \\ \hline
\text{9} & \text{FabriATK} & \text{Mención Especial} \\ \hline
\text{9} & \text{LorenzoRD} & \text{Mención Especial} \\ \hline
\text{9} & \text{NehuenIGDS} & \text{Mención Especial} \\ \hline
\text{12} & \text{Nahu} & \text{Mención Especial} \\ \hline
\text{13} & \text{mariano p} & \text{Mención Especial} \\ \hline
\text{13} & \text{M. Julieta. B} & \text{Mención Especial} \\ \hline
\text{15} & \text{3.141592} & \text{Mención Especial} \\ \hline
\end{array}

Felicidades a todos!

Vistas: 252  •  Comentarios: 0  •  Publicar una respuesta [ Leer todo ]



  • Problema del día

Problema del día de OMA:
Se tienen $2009$ sucesiones finitas de $0$ y $1$. Ninguna de ellas coincide con el comienzo de otra. Si $n$ es el total de $0$ y $1$ contenidos en las $2009$ sucesiones, hallar el menor valor posible de $n$.
Link al tema.

Problema del día de Geometría:
Sea $ABCD$ un cuadrilátero inscripto en una circunferencia $O$. Para un punto $E$ de $O$, se consideran sus proyecciones $K,L,M,N$ sobre las rectas $DA,AB,BC,CD$ respectivamente. Demostrar que si $N$ es el ortocentro del triángulo $KLM$ para algún punto $E$ distinto de $A,B,C,D$ entonces lo mismo ocurre para todo punto $E$ de la circunferencia $O$.
Link al tema.

Problema del día de Ñandú:
Rafael quiere pintar un muñequito usando pintura blanca, negra y azul. Quiere usar los tres los colores. Tiene que pintar el sombrero, la remera, el pantalón y los zapatos.

¿De cuántas maneras distintas puede pintarlo?
Link al tema.


  • Últimos temas

Presentación


Buem, me presento... Soy Leonel Sidabra de Avellaneda y espero que esto tenga vida

Vistas: 1960  •  Comentarios: 0  •  Escribir comentario

Maratón de Problemas


Bueno, para ponerle onda al foro, vamos a hacer una maratón de problemas. La idea es así:
Se postea un problema, X lo resuelve y cuando lo resuelve postea un nuevo problema.
Si un problema queda sin solución por 3 días o más se prosigue a postear uno nuevo y seguir buscando la solución para después.

Acá va el problema 1:

PROBLEMA 1

Sea [math] el mínimo común múltiplo entre dos números [math] y [math] . Sea [math] el divisor común mayor. Demostrar que si [math] entonces un número es múltiplo del otro.

Vistas: 330086  •  Comentarios: 1328  •  Escribir comentario [ Leer todo ]

Presentación


Hola soy Alfredo de misiones y participo en OMA desde /mo año

Vistas: 2089  •  Comentarios: 0  •  Escribir comentario

Olakase


Hola mi nombre es Nacho. Espero que este foro no decaiga y que siga poniendo onda. Suerte a todos.

Vistas: 2158  •  Comentarios: 0  •  Escribir comentario

Este me lo paso un chileno (3)


Decidir si es posible pintar todos los naturales de azul y rojo de modo que:
·Haya infinitos números pintados de azul.
·Haya infinitos números pintados de rojo.
·Si hay [math] números pintados de azul, también el resultado de su suma está pintado de azul.
·Si hay [math] números pintados de rojo, también el resultado de su suma está pintado de rojo.

Vistas: 2632  •  Comentarios: 3  •  Escribir comentario [ Leer todo ]




  •  Ultimos posts

  •  ¿Quién está conectado?
  • En total hay 6 usuarios conectados :: 2 registrados, 0 ocultos y 4 invitados

    Usuarios registrados: Bing [Bot], Google [Bot]