Se encontraron 206 coincidencias

por Matías
Mar 22 Dic, 2020 4:06 pm
Foro: Geometría
Tema: Problema inventado de Geometría
Respuestas: 11
Vistas: 1488

Re: Problema inventado de Geometría

31
por Matías
Mar 17 Nov, 2020 7:52 pm
Foro: Problemas Archivados de Teoría de Números
Tema: Ibero 2020 - P4
Respuestas: 5
Vistas: 1375

Re: Ibero 2020 - P4

Sean $p_1<p_2<\cdots<p_{4040}$ números primos. Sea $C=\{a_i|1\leq i\leq 2020\}$ con $a_i=\prod_{k=1}^{i}p_k\prod_{k=2021}^{4041-i}p_k$ $\forall 1\leq i\leq 2020$. Entonces nos queda que $(a_i:a_j)=\prod_{k=1}^{i}p_k\prod_{k=2021}^{4041-j}p_k$ y $[a_i:a_j]=\prod_{k=1}^{j}p_k\prod_{k=2021}^{4041-i}p_...
por Matías
Mié 07 Oct, 2020 6:02 pm
Foro: Problemas Archivados de Geometría
Tema: IMO 2020 Problema 6
Respuestas: 2
Vistas: 1477

Re: IMO 2020 Problema 6

$\alpha=\frac{1}{2}$ Sean $A$ y $B$ dos de los $n$ puntos en el plano tales que su distancia $AB=d$ sea la mayor entre cualesquiera dos puntos. De esta manera, tenemos que los $n$ puntos pertenecen al rectángulo de $2d\times d$ con base media $AB$ (cualquier punto fuera de este rectángulo está a una...
por Matías
Jue 24 Sep, 2020 2:56 pm
Foro: Problemas Archivados de Álgebra
Tema: IMO 2020 Problema 2
Respuestas: 8
Vistas: 3586

Re: IMO 2020 Problema 2

Por AM-GM con pesas $$a^ab^bc^cd^d\leq a^2+b^2+c^2+d^2$$ $\forall(a, b, c, d>0\wedge a+b+c+d=1)$ Ahora sea $f(a,b,c,d)=(a+b+c+d)^3-(a+2b+3c+4d)(a^2+b^2+c^2+d^2)$ $\forall a\geq b\geq c\geq d>0$ Vamos a demostrar que $f(a,b,c,d)\geq f(b,b,c,d)\geq f(c,c,c,d)>0$ Si expandimos y expresamos como polino...
por Matías
Dom 28 Jun, 2020 1:22 am
Foro: Problemas Archivados de Álgebra
Tema: IMO 2005 - P3
Respuestas: 1
Vistas: 1497

Re: IMO 2005 - P3

Sean $(a_1,a_2,\cdots,a_n)$ y $(b_1,b_2,\cdots,b_n)$ dos sucesiones de $n$ números reales. Decimos que $(a_1,a_2,\cdots,a_n)$ mayoriza a $(b_1,b_2,\cdots,b_n)$ si se cumplen las siguientes condiciones: -Ambas sucesiones son decrecientes (es decir, $a_1\geq a_2\geq\cdots\geq a_n$ y $b_1\geq b_2\geq\...
por Matías
Dom 22 Dic, 2019 11:11 pm
Foro: Problemas Archivados de Teoría de Números
Tema: Entrenamiento Ibero 2019 P20
Respuestas: 2
Vistas: 2695

Entrenamiento Ibero 2019 P20

Para cada entero positivo $n$ definimos la siguiente sucesión: $a_1=n$ y para cada $k\geq 2$, $a_k$ es el menor múltiplo de $k$ mayor o igual que $a_{k-1}$. Decimos que el entero positivo $n$ es bueno si $a_k\neq a_{k-1}$ para todo entero positivo $k$. Demostrar que existen infinitos enteros positiv...
por Matías
Dom 22 Dic, 2019 11:03 pm
Foro: Problemas Archivados de Geometría
Tema: Entrenamiento Ibero 2019 P19
Respuestas: 4
Vistas: 1648

Entrenamiento Ibero 2019 P19

En el triángulo $ABC$, la circunferencia inscrita $\omega$ es tangente a los lados $BC$, $CA$ y $AB$ en los puntos $D$, $E$, $F$ respectivamente. Sean $M$ y $N$ los puntos medios de $DE$ y $DF$ respectivamente. Se consideran puntos $D'$, $E'$, $F'$ en la recta $MN$ tales que $D'E=D'F$, $BE'||DF$ y $...
por Matías
Dom 22 Dic, 2019 10:50 pm
Foro: Problemas Archivados de Álgebra
Tema: Entrenamiento Ibero 2019 P18
Respuestas: 3
Vistas: 1239

Entrenamiento Ibero 2019 P18

Demostrar que para todas las ternas $(x,y,z)$ de números positivos se cumple la desigualdad
$$\frac{x}{\sqrt{3y^2+3z^2+2yz}}+\frac{y}{\sqrt{3z^2+3x^2+2zx}}+\frac{z}{\sqrt{3x^2+3y^2+2xy}}\geq\frac{3}{8}$$
por Matías
Dom 22 Dic, 2019 10:42 pm
Foro: Problemas Archivados de Álgebra
Tema: Entrenamiento Ibero 2019 P16
Respuestas: 1
Vistas: 916

Entrenamiento Ibero 2019 P16

Determinar si existen polinomios no constantes $P(x)$ y $Q(x)$ de coeficientes reales que satisfacen $P(x)^{10}+P(x)^9=Q(x)^{21}+Q(x)^{20}$.
por Matías
Dom 22 Dic, 2019 10:40 pm
Foro: Problemas Archivados de Geometría
Tema: Entrenamiento Ibero 2019 P15
Respuestas: 3
Vistas: 1022

Entrenamiento Ibero 2019 P15

Sea $ABC$ un triángulo acutángulo con $AB\neq AC$ y $H$ su ortocentro. Sean $D$ y $E$ las intersecciones de $BH$ y $CH$ con $AC$ y $AB$ respectivamente, y $P$ el pie de la perpendicular de $A$ a $DE$. El circuncírculo de $BPC$ corta a $DE$ en un punto $Q\neq P$. Demostrar que las rectas $AP$ y $QH$ ...