IMO 2002 - P4

Avatar de Usuario
Gianni De Rico

FOFO 7 años - Mención Especial
Mensajes: 843
Registrado: Vie 16 Sep, 2016 6:58 pm
Medallas: 1
Nivel: Exolímpico
Ubicación: Rosario
Contactar:

IMO 2002 - P4

Mensaje sin leer por Gianni De Rico » Jue 13 Dic, 2018 12:16 pm

Sea $n>1$ un entero, y sean $d_1<d_2<\ldots <d_k$ los divisores positivos de $n$, de forma que $d_1=1$ y $d_k=n$. Sea $d=d_1d_2+d_2d_3+\ldots +d_{k-1}d_k$. Demostrar que $d<n^2$ y hallar todos los $n$ tales que $d$ divide a $n^2$.
[math]

Responder