Nacional 2001 N2 P3

Problemas que aparecen en el Archivo de Enunciados.
Avatar de Usuario
AgusBarreto

OFO - Medalla de Bronce-OFO 2015 OFO - Medalla de Bronce-OFO 2016 OFO - Jurado-OFO 2017 FOFO 7 años - Jurado-FOFO 7 años OFO - Jurado-OFO 2018
FOFO 8 años - Jurado-FOFO 8 años OFO - Jurado-OFO 2019 FOFO Pascua 2019 - Jurado-FOFO Pascua 2019 FOFO 9 años - Jurado-FOFO 9 años COFFEE - Jurado-COFFEE Matías Saucedo
OFO - Jurado-OFO 2020 FOFO Pascua 2020 - Jurado-FOFO Pascua 2020 COFFEE - Jurado-COFFEE Carolina González COFFEE - Jurado-COFFEE Ariel Zylber FOFO 10 años - Jurado-FOFO 10 años
OFO - Jurado-OFO 2021 FOFO 11 años - Jurado-FOFO 11 años OFO - Jurado-OFO 2022
Mensajes: 157
Registrado: Sab 15 Sep, 2012 6:28 pm
Medallas: 18
Nivel: Exolímpico
Ubicación: San Martín, Buenos Aires

Nacional 2001 N2 P3

Mensaje sin leer por AgusBarreto »

Carlos coloreó cada casilla de un tablero de [math] x [math] con uno de cuatro colores de modo que haya exactamente [math] casillas de cada color en cada fila y en cada columna. Demostrar que en el tablero hay dos filas y dos columnas tales que las cuatro casillas de las intersecciones de esas filas y columnas son una de cada color.
Avatar de Usuario
BrunoDS

OFO - Medalla de Plata-OFO 2018 OFO - Medalla de Oro-OFO 2019
Mensajes: 99
Registrado: Dom 16 Nov, 2014 7:09 pm
Medallas: 2
Nivel: Exolímpico
Ubicación: Martínez

Re: Nacional 2001 N2 P3

Mensaje sin leer por BrunoDS »

Spoiler: mostrar
Supongamos que no existen dos filas y dos columnas tales que sus cuatro intersecciones sean de distinto color.

Dada una fila, contaremos los pares de casillas de distinto color. Hay $\binom{4}{2}=6$ formas de elegir $2$ de los $4$ colores y hay $25$ casillas de cada color por fila. Luego, hay por fila: $6\times 25\times 25=3750$ pares de casillas de distinto color y hay entre las $100$ filas: $100\times3750=375000$ pares.

Ahora, cada par de casillas que contamos se encuentra sobre un par de columnas. En total hay $\binom{100}{2}=4950$ pares de columnas, por lo que, por el principio del palomar, hay un par de columnas con al menos:
$\frac{375000}{4950}=75,7575...>75$
$75$ pares de casillas de distinto color.

Ahora, miremos este par de columnas con más de $75$ pares de casillas en la misma fila de distinto color.

Sean $A$, $B$, $C$ y $D$ los cuatro colores. Sin pérdida de generalidad, supongamos que un par está pintado $A,B$. Como hay a lo sumo $50 A$ entre las dos columnas y hay más de $75$ pares de casillas, entonces habrá un par que no esté pintado con el color $A$. Este par debe estar pintado $B,C$ (sin pérdida de generalidad), ya que debe compartir un color con $A,B$. Análogamente, hay un par que no está pintado con el color $B$, por lo que debe ser $A,C$, ya que debe compartir un color con $A,B$ y con $B,C$.

Luego, como hay un par $A,B$, un par $A,C$ y un par $B,C$, no puede haber ningún par con $D$. Como hay más de $75$ pares, hay más de $150$ casillas, pero en total hay a lo sumo $50A+50B+50C=150$ casillas (ya que no puede haber un $D$). Luego, llegamos a una contradicción, por lo que existen dos filas y dos columnas tales que las cuatro casillas de las intersecciones de esas filas y columnas son una de cada color.

1  
"No se olviden de entregar la prueba antes de irse..."
Responder