APMO 2020 Problema 5

Problemas que aparecen en el Archivo de Enunciados.
Avatar de Usuario
Turko Arias

Colaborador-Varias OFO - Medalla de Plata-OFO 2016 OFO - Medalla de Oro-OFO 2019 FOFO Pascua 2019 - Medalla-FOFO Pascua 2019 COFFEE - Jurado-COFFEE Matías Saucedo
OFO - Jurado-OFO 2020 FOFO Pascua 2020 - Jurado-FOFO Pascua 2020 COFFEE - Jurado-COFFEE Carolina González COFFEE - Jurado-COFFEE Ariel Zylber COFFEE - Jurado-COFFEE Iván Sadofschi
FOFO 10 años - Jurado-FOFO 10 años
Mensajes: 486
Registrado: Lun 28 Nov, 2011 11:39 am
Medallas: 11
Nivel: Ñandú
Ubicación: La Plata, Provincia de Buenos Aires

APMO 2020 Problema 5

Mensaje sin leer por Turko Arias »

Sea $n\geq 3$ un entero fijo. El número $1$ se escribe $n$ veces en el pizarrón. Debajo del pizarrón hay dos baldes que inicialmente están vacíos. Una movida consiste en borrar dos números del pizarrón, $a$ y $b$, reemplazarlos por los números $1$ y $a+b$, y a continuación agregar una piedra al primer balde y agregar $\text{mcd}(a,b)$ piedras al segundo balde. Al cabo de un número finito de movidas, hay $s$ piedras en el primer balde y $t$ piedras en el segundo balde, donde $s$ y $t$ son enteros positivos. Hallar todos los valores posibles de la fracción $\frac{t}{s}$.
Fundamentalista del Aire Acondicionado

Responder