Selectivo Ibero 2022 - P4

Problemas que aparecen en el Archivo de Enunciados.
Avatar de Usuario
NPCPepe

FOFO 9 años - Mención Especial-FOFO 9 años COFFEE - Mención-COFFEE Matías Saucedo OFO - Medalla de Plata-OFO 2020 FOFO Pascua 2020 - Medalla-FOFO Pascua 2020 COFFEE - Mención-COFFEE Carolina González
COFFEE - Mención-COFFEE Ariel Zylber COFFEE - Mención-COFFEE Iván Sadofschi FOFO 10 años - Medalla-FOFO 10 años
Mensajes: 81
Registrado: Lun 17 Jun, 2019 9:22 pm
Medallas: 8
Nivel: 3
Ubicación: Argentina

Selectivo Ibero 2022 - P4

Mensaje sin leer por NPCPepe »

Sea $n$ un entero positivo. Se colorea cada casilla de un tablero cuadrado de $n$x$n$ de azul o de rojo. En total hay $k$ casillas azules en el tablero, Uri escribe al lado de cada fila el número de casillas azules de esa fila, elevado al cuadrado, y debajo de cada columna el número de casillas azules de esa columna, elevado al cuadrado. Finalmente suma los $2n$ números que escribió y obtiene el resultado $A$. Luego hace esos mismos cálculos pero contando en cada caso las casillas rojas (en lugar de las azules) y obtiene el resultado $R$. Si $A-R=50$, determinar todos los posibles valores de $k$, y para cada $k$ hallado, dar un ejemplo de un posible tablero.
$3=569936821221962380720^3+(-569936821113563493509)^3+(-472715493453327032)^3$: esta es la tercer menor solucion descubierta para la ecuación $a^3+b^3+c^3=3$ , las otras dos son $1^3+1^3+1^3=3$ y $4^3+4^3+(-5)^3=3$
Responder